Dataset link: https://www.dropbox.com/s/uh7o7uyeghqkhoy/diabetes.csv?dl=0
Importing the Depedencies
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
Data Collection And Analysis
PIMA Diabetes Dataset
# loading the diabetes dataset to a pandas DataFrame
diabetes_dataset = pd.read_csv('diabetes.csv')
pd.read_csv?
# printing the first 5 rows of the dataset
diabetes_dataset.head()
# number of rows and columns in this dataset
diabetes_dataset.shape
# getting the statistical measures of the data
diabetes_dataset.describe()
diabetes_dataset['Outcome'].value_counts()
0 –> Non-Diabetic
1 –> Diabetic
diabetes_dataset.groupby('Outcome').mean()
# separating the data and labels
X = diabetes_dataset.drop(columns = 'Outcome', axis=1)
Y = diabetes_dataset['Outcome']
print(X)
print(Y)
Data Standardization
scaler = StandardScaler()
scaler.fit(X)
standardized_data = scaler.transform(X)
print(standardized_data)
X = standardized_data
Y = diabetes_dataset['Outcome']
print(X)
print(Y)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
Training the Model
classifier = svm.SVC(kernel='linear')
# training the support vector machine classifier
classifier.fit(X_train, Y_train)
Model Evaluation : Accuracy Score
# accuracy score on the training data
X_train_prediction = classifier.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Accuracy score of the training data : ', training_data_accuracy)
# accuracy score on the training data
X_test_prediction = classifier.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
print('Accuracy score of the test data :', test_data_accuracy)
Making a Predictive System
input_data = (5, 166, 72, 19, 175, 25.8, 0.587, 51)
# changing the input_data to numpy array
input_data_as_numpy_array = np.asarray(input_data)
# reshape the array as we are predicting for one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1, -1)
# standardize the input data
std_data = scaler.transform(input_data_reshaped)
print(std_data)
prediction = classifier.predict(std_data)
print(prediction)
if (prediction[0] == 0):
print('The person is not diabetic')
else:
print('The person is diabetic')
The following two tabs change content below.
Seorang pemuda luar biasa yang mempunyai hobi menulis, membaca, dan bermusik. Tertarik dengan bidang ilmu komputer untuk memecahkan beberapa persoalan. Co-Founder Triglav ID dan Co-Founder METLIGO. Sejak tahun 2018 bekerja di BMKG di bagian Pusat Database.
Latest posts by mahisaajy (see all)
- Selamat Purna Tugas - November 19, 2024
- ESRI Professional Fellowship Program 2023 - January 14, 2024
- Pemanfaatan OSM dalam Mendukung Pemenuhan Data Spasial di Instansi Pemerintah Indonesia - January 13, 2024